iCAx开思网

标题: A WAVE BASED PREDICTION TECHNIQUE FOR COUPLED VIBRO-ACOUSTIC ANALYSIS(书) [打印本页]

作者: sunnygu    时间: 2006-2-9 06:30
标题: A WAVE BASED PREDICTION TECHNIQUE FOR COUPLED VIBRO-ACOUSTIC ANALYSIS(书)
电子书,要的跟贴。我传。

TABLE OF CONTENTS
DANKWOORD i
ABSTRACT iii
NEDERLANDSE SAMENVATTING v
NOMENCLATURE xxvii
TABLE OF CONTENTS xxxi
1. INTRODUCTION AND STATE-OF-THE-ART IN COUPLED
VIBRO-ACOUSTIC MODELLING 1
1.1. Introduction 1
1.1.1. Fluid-structure interaction 1
1.1.2. Importance of (vibro-acoustic) numerical modelling 3
1.1.3. Scope of the dissertation 4
1.2. Formulation of a coupled vibro-acoustic problem 5
1.3. Existing numerical prediction techniques 11
1.3.1. Basic concepts and properties of FEM and BEM 12
1.3.1.1. FEM 12
1.3.1.2. BEM 22
1.3.1.3. FEM versus BEM for acoustic problems 30
1.3.2. Coupled FE/FE models 31
1.3.2.1. Interior problems 31
1.3.2.2. Exterior problems 36
1.3.3. Coupled FE/BE models 39
1.3.3.1. Coupled FE/direct BE model 39
1.3.3.2. Coupled FE/indirect BE model 40
1.3.4. Coupled FE/FE models versus coupled FE/BE models 40
1.3.5. Limitations of coupled models 42
1.4. Recent advances in numerical prediction techniques 48
1.4.1. Motivation 48
1.4.2. Advances in element based prediction techniques 49
1.4.3. Trefftz approach 52
1.4.3.1. Trefftz method 52
1.4.3.2. Dynamic stiffness method 56
1.4.3.3. T-element method 59
1.4.4. Wave based prediction technique 61
1.4.4.1. Basic principles 61
1.4.4.2. Outline of the dissertation 62
2. METHODOLOGY OF THE WAVE BASED PREDICTION
TECHNIQUE 65
2.1. Introduction 65
2.2. Problem definition 67
2.3. Field variable expansions 70
2.3.1. Acoustic pressure expansion 70
2.3.2. Structural displacement expansion 71
2.4. Coupled vibro-acoustic wave model 73
2.4.1. Integral formulation of the boundary conditions 73
2.4.1.1. Weighted residual formulation 74
2.4.1.2. Least-squares formulation 78
2.4.2. Model properties 80
2.5. Convergence requirements 82
2.5.1. Introductory considerations 82
2.5.2. Rectangular continuum domain 84
2.5.3. Non-rectangular continuum domain
2.5.4. Wave model implementation 93
2.6. Practical implementation 104
2.6.1. Wave function scaling 104
2.6.2. Numerical integration 106
2.6.3. Wave function truncation 107
2.7. Numerical condition and convergence 109
2.7.1. Condition 109
2.7.2. Convergence 113
2.7.2.1. A posteriori convergence assessment 113
2.7.2.2. Some validation examples 114
2.7.2.3. Weighted residual versus least-squares model 122
2.7.2.4. Comparison with an existing complete function set 124
2.8. Comparison with FEM and BEM 128
2.9. Conclusions 130
3. APPLICATION OF THE WAVE BASED PREDICTION
TECHNIQUE FOR TWO-DIMENSIONAL COUPLED VIBROACOUSTIC
PROBLEMS 133
3.1. Introduction 133
3.2. Interior coupled vibro-acoustic problems with flat structural
components 134
3.2.1. Vibro-acoustic reciprocity 134
3.2.2. Comparison with coupled FE/FE models 136
3.3. Interior coupled vibro-acoustic problems with curved structural
components 142
3.3.1. Problem definition 142
3.3.1.1. Dynamic equations for circular cylindrical shell structures 142
3.3.1.2. Coupled vibro-acoustic problem 145
3.3.2. Field variable expansions 146
3.3.2.1. Acoustic pressure expansion 146
3.3.2.2. Structural field variable expansions 147
3.3.3. Coupled vibro-acoustic wave model 150
3.3.4. Validation examples 151
3.3.4.1. Cavity-backed circular cylindrical shell section 151
3.3.4.2. Fluid-loaded circular cylindrical shell 153
3.3.5. Comparison with coupled FE/FE models 156
3.4. Interior coupled vibro-acoustic problems with poroelastic insulation
material 165
3.4.1. Problem definition 166
3.4.1.1. Dynamic equations 166
3.4.1.2. Boundary conditions 171
3.4.2. Field variable expansions 172
3.4.3. Wave model 174
3.4.4. Validation example 178
3.4.5. Accuracy of a spatially invariant impedance model 181
3.5. Exterior coupled vibro-acoustic problems 187
3.6. Conclusions 190
4. APPLICATION OF THE WAVE BASED PREDICTION
TECHNIQUE FOR THREE-DIMENSIONAL COUPLED
VIBRO-ACOUSTIC PROBLEMS 193
4.1. Introduction 193
4.2. Uncoupled plate problems 194
4.2.1. Problem definition 194
4.2.2. Field variable expansion 197
4.2.3. Weighted residual wave model 198
4.2.4. Convergence requirements 204
4.2.5. Some validation examples 211
4.2.6. Comparison with an existing complete function set 215
4.3. Uncoupled interior acoustic problems 217
4.3.1. Problem definition 217
4.3.2. Field variable expansion 218
4.3.3. Weighted residual wave model 219
4.3.4. Convergence requirements 220
4.3.5. Validation example 225
4.4. Coupled vibro-acoustic problems 227
4.4.1. Problem definition 228
4.4.2. Field variable expansions 229
4.4.3. Coupled vibro-acoustic wave model 237
4.4.4. Performance comparison with coupled FE/FE models 240
4.4.5. Modal analysis of a double-panel partition 251
xxxv
4.5. Conclusions 258
5. CONCLUSIONS AND FUTURE DEVELOPMENTS 259
5.1. Conclusions 259
5.2. Future developments 263
APPENDIX A. FINITE ELEMENT METHOD FOR
UNCOUPLED ACOUSTIC PROBLEMS 265
APPENDIX B. FINITE ELEMENT METHOD FOR
UNCOUPLED STRUCTURAL PROBLEMS 297
APPENDIX C. DIRECT BOUNDARY ELEMENT METHOD
FOR UNCOUPLED ACOUSTIC PROBLEMS
335
APPENDIX D. COUPLED FE/FE AND COUPLED FE/BE
MODELS 351
APPENDIX E. WAVE PROPAGATION IN FLUIDSATURATED
POROELASTIC MEDIA 371
APPENDIX F. COUPLED VIBRO-ACOUSTIC BEHAVIOUR
OF DOUBLE-PANEL PARTITIONS 391
REFERENCES 433
作者: ttzhu    时间: 2008-3-17 09:36
请传一份给我,flyingbabe@gmail.com
谢谢!
作者: yiby    时间: 2008-5-2 10:52
我想要,请给我传一份
作者: jlusjq    时间: 2008-5-21 18:51
能传我一份吗?谢谢了   jlusjq@163.com




欢迎光临 iCAx开思网 (https://www.icax.org/) Powered by Discuz! X3.3