找回密码 注册 QQ登录
一站式解决方案

iCAx开思网

CAD/CAM/CAE/设计/模具 高清视频【积分说明】如何快速获得积分?快速3D打印 手板模型CNC加工服务在线3D打印服务,上传模型,自动报价
查看: 22637|回复: 5
打印 上一主题 下一主题

参数化技术与变量化技术的造型技术

[复制链接]
跳转到指定楼层
1
发表于 2002-2-2 11:22:08 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式

马上注册,结交更多同行朋友,交流,分享,学习。

您需要 登录 才可以下载或查看,没有帐号?注册

x
1. 参数化造型技术的主要特点
  
在上一期本文已初步论及参数化造型技术的产生及发展过程。相对于在此之前的造型理论,参数化造型技术无疑是极大的进步。参数化造型是如何定义的呢?
  
参数化造型是由编程者预先设置一些几何图形约束,然后供设计者在造型时使用。与一个几何相关联的所有尺寸参数可以用来产生其它几何。其主要技术特点是:基于特征、全尺寸约束、尺寸驱动设计修改、全数据相关。
  
基于特征:将某些具有代表性的平面几何形状定义为特征,并将其所有尺寸存为可调参数,进而形成实体,以此为基础来进行更为复杂的几何形体的构造;
  
全尺寸约束:将形状和尺寸联合起来考虑,通过尺寸约束来实现对几何形状的控制。造型必须以完整的尺寸参数为出发点(全约束),不能漏注尺寸(欠约束),不能多注尺寸(过约束);
  
尺寸驱动设计修改:通过编辑尺寸数值来驱动几何形状的改变;
  
全数据相关:尺寸参数的修改导致其它相关模块中的相关尺寸得以全盘更新。
  
采用这种技术的理由在于:它彻底克服了自由建模的无约束状态,几何形状均以尺寸的形式而牢牢地控制住。如打算修改零件形状时,只需编辑一下尺寸的数值即可实现形状上的改变。尺寸驱动已经成为当今造型系统的基本功能,无此功能的造型系统已无法生存。尺寸驱动在道理上容易理解,尤其对于那些习惯看图纸、以尺寸来描述零件的设计者是十分对路的。
  
工程关系(Engineering Relationship)如:重量、载荷、力、可靠性等关键设 计参数,在参数化系统中不能作为约束条件直接与几何方程建立联系,它需要另外的处理手段。
  
2. 变量化造型技术的主要特点
  
变量化技术是在参数化的基础上又做了进一步改进后提出的设计思想。变量化造型的技术特点是保留了参数化技术基于特征、全数据相关、尺寸驱动设计修改的优点,但在约束定义方面做了根本性改变。
  
变量化技术将参数化技术中所需定义的尺寸"参数"进一步区分为形状约束和尺寸约束,而不是象参数化技术那样只用尺寸来约束全部几何。采用这种技术的理由在于:在大量的新产品开发的概念设计阶段,设计者首先考虑的是设计思想及概念,并将其体现于某些几何形状之中。这些几何形状的准确尺寸和各形状之间的严格的尺寸定位关系在设计的初始阶段还很难完全确定,所以自然希望在设计的初始阶段允许欠尺寸约束的存在。此外在设计初始阶段,整个零件的尺寸基准及参数控制方式如何处理还很难决定,只有当获得更多具体概念时,一步步借助已知条件才能逐步确定怎样处理才是最佳方案。
  
除考虑几何约束(Geometry Constrain)之外,变量化设计还可以将工程关系作为约束条件直接与几何方程联立求解,无须另建模型处理。
  
3. 两种造型技术之共同点
  
两种技术都属于基于约束的实体造型系统,都强调基于特征的设计、全数据相关,并可实现尺寸驱动设计修改,也都提供方法与手段来解决设计时所必须考虑的几何约束和工程关系等问题。由于这些内容大家比较容易理解,这里不再赘述。
  
以上这些表面上的共同点使得这两种系统看起来很类似,这也就导致了一般用户很难区分这两种系统,并经常将参数化及变量化技术混为一谈。事实上,两者之间有着基本的差异,而这些差异对今后CAD技术的发展以及用户的选型应用至关重要。这也正是本文论述试图所达到的目的。
  
4. 两种造型技术之基本区别──约束的处理
  
参数化技术在设计全过程中,将形状和尺寸联合起来一并考虑,通过尺寸约束来实现对几何形状的控制;变量化技术将形状约束和尺寸约束分开处理。
  
参数化技术在非全约束时,造型系统不许可执行后续操作;变量化技术由于可适应各种约束状况,操作者可以先决定所感兴趣的形状,然后再给一些必要的尺寸,尺寸是否注全并不影响后续操作。
  
参数化技术的工程关系不直接参与约束管理,而是另由单独的处理器外置处理;在变量化技术中,工程关系可以作为约束直接与几何方程耦合,最后再通过约束解算器统一解算。
  
由于参数化技术苛求全约束,每一个方程式必须是显函数,即所使用的变量必须在前面的方程式内已经定义过并赋值于某尺寸参数,其几何方程的求解只能是顺序求解;变量化技术为适应各种约束条件,采用联立求解的数学手段,方程求解顺序无所谓。
  
参数化技术解决的是特定情况(全约束)下的几何图形问题,表现形式是尺寸驱动几何形状修改;变量化技术解决的是任意约束情况下的产品设计问题,不仅可以做到尺寸驱动(Dimension-Driven),亦可以实现约束驱动(Constrain-Driven),即由工程关系来驱动几何形状的改变,这对产品结构优化是十分有意义的。
  
由此可见,是否要全约束以及以什么形式来施加约束恰恰是两种技术的分水岭。也许这个立论可以很好地回答多年来很多CAD用户经常问的一个问题:"参数化及变量化之间的区别究竟是什么?"
  
5. 不同的技术导致截然不同的应用
  
由于参数化系统的内在限定是求解特殊情况,因此系统内部必须将所有可能发生的特殊情况以程序全盘描述,这样,设计者就被系统寻求特殊情况解的技术限制了设计方法。
  
因此,参数化系统的指导思想是:你只要按照系统规定的方式去操作,系统保证你生成的设计的正确性及效率性,否则拒绝操作。造型过程是一个类似模拟工程师读图纸的过程,由关键尺寸、形体尺寸、定位尺寸一直到参考尺寸,待无一遗漏全部看懂(输入计算机)后,形体自然在脑海中(在屏幕上)形成。造型必须按部就班,过程必须严格。
  
这种思路及苛刻规定带来了相当的副作用。一是使用者必须遵循软件内在使用机制,如决不允许欠尺寸约束、不可以逆序求解等;二是当零件截面形状比较复杂时,参数化系统规定将所有尺寸表达出来的要求让设计者有点儿勉为其难,满屏幕的尺寸易让人有无从下手之感;三是由于只有尺寸驱动这一种修改手段,那么究竟改变哪一个(或哪几个)尺寸会导致形状朝着自己满意方向改变呢?这并非容易判断;另外,尺寸驱动的范围亦是有限制的,使用者要经常留神。如果给出了一个极不合理的尺寸参数,致使某特征变形过分,与其它特征相干涉,从而引起拓扑关系的改变,那仍然是有问题的。
  
因此从应用上来说,参数化系统特别适用于那些技术已相当稳定成熟的零配件行业。这样的行业,零件的形状改变很少,经常只需采用类比设计,即形状基本固定,只需改变一些关键尺寸就可以得到新的系列化设计结果。再者就是由二维到三维的抄图式设计,图纸往往是绝对符合全约束条件的。
  
变量化系统的指导思想是:设计者可以采用先形状后尺寸的设计方式,允许采用不完全尺寸约束,只给出必要的设计条件,这种情况下仍能保证设计的正确性及效率性,因为系统分担了很多繁杂的工作。造型过程是一个类似工程师在脑海里思考设计方案的过程,满足设计要求的几何形状是第一位的,尺寸细节是后来才逐步精确完善的。设计过程相对自由宽松,设计者可以有更多的时间和精力去考虑设计方案,而无须过多关心软件的内在机制和设计规则限制,这符合工程师的创造性思维规律,所以变量化系统的应用领域也更广阔一些。除了一般的系列化零件设计,变量化系统在做概念设计时特别得心应手,比较适用于新产品开发、老产品改形设计这类创新式设计。
  
6. 其它技术差异──特征的管理
  
参数化技术在整个造型过程中,将所构造的形体中用到的全部特征按先后顺序串联式排列,这主要是检索方便。在特征序列中,每一个特征与前一个特征都建立了明确的依附关系。但是,当有时因设计要求需要修改或去掉前一个特征时,则其子特征被架空,这样极易引起数据库混乱,导致与其相关的后续特征受损失。如深究其原因,还是由于全尺寸约束的条件不满足及特征管理不完善所致。这是参数化技术目前存在的比较大的缺陷。 变量化技术突破了这种限制。它采用历史树表达方式,各特征以树状结构挂在零件的"根"上,每特征除了与前面特征保持关联外,同时与系统全局坐标系建立联系。前一特征更改时,后面特征会自动更改,保持全过程相关性。同时,一旦发生前一特征被删除,后面特征失去定位基准时,两特征之间的约束随之自动解除,系统会通过联立求解方程式自动在全局坐标系下给它确定位置,后面特征不会受任何影响。这是针对参数化技术的缺陷进行深入研究后提出的更好的解决方案。树状结构还许可将复杂零件拆分成数个零件然后合并到一起。它清楚地记录了设计过程,便于进行修改,有利于多人的协同设计。
  
7. VGX技术──设计就是修改
  
谈到变量化技术,就不能不提及到SDRC的VGX技术。VGX是Variational Geometry Extended(超变量化几何)的缩写,是变量化技术发展的一个里程碑。它的思想最早体现在I-DEAS Master Series第一版的变量化构图中,历经变量化整形、变量化方程、变量化扫掠几个发展阶段后,引申应用到具有复杂表面的三维变量化特征之中。
  
设计过程,从来都是一个不断改进、不断完善的过程。也可以说设计就是修改,或更进一步说,设计就是灵活的修改。VGX正是充分利用了形状约束和尺寸约束分开处理、无需全约束的灵活性,让设计者可以针对零件上的任意特征直接以拖动方式非常直观地、实时地进行图示化编辑修改,在操作上特别简单方便,最直接地体现出设计者的创作意图,给设计者带来了空前的易用性。
  
VGX克服了参数化技术中几个重要缺陷。国际著名咨询公司D.H. Brown评价到 "VGX将直接几何描述和历史树描述这两种目前最好的造型技术创造性地结合起来,这意味着用户只需在一个主模型中,就可以动态地捕捉设计、分析和制造的意图并一气呵成地进行操作。显然,VGX极大地改进了交互操作的直观性及可靠性,从而更易于使用,使设计更富有效率。"
  
如仔细归纳,VGX对设计有如下明显的好处:  
不要求"全尺寸约束",在全约束及欠约束的情况下均可顺利完成造型 ;  
模型修改可以基于造型历史树亦可以超越造型历史树,例如不同"树干"上的特征可以直接建立约束关系;  
可直接编辑3D实体特征,无需回到生成此特征的2D线框初始状态;  
可就地以拖动方式修改3D实体模型,而不是仅用尺寸驱动一种修改方式 ;  
拖动时(Drag)显现任意多种设计方案,而不是尺寸驱动一次仅得到一个方案;放下时(Drop)即完成形状修改,尺寸随之自动更改;  
以拖动方式编辑3D实体模型时,可以直观地预测与其它特征的关系,控制模型形状按需要的方向改变,不象尺寸驱动那样无法准确预估驱动后的结果;  
模型修改许可形状及拓扑关系发生变化,而并非仅是尺寸的数据发生变化。  
8. 变量化技术的其它特点──动态引导器
  
动态引导器(Dynamic Navigator)是SDRC为实现变量化技术,很早就提供使用的一个辅助工具。它是一个智能化的操作参谋,以直观的交互形式与用户同步思考。在光标所指之处,它自动拾取、判断所有的模型元素的种类及相对空间位置,自动增加有利约束,理解设计者的设计意图,记忆常用的步骤,并预计下一步要做的工作,大量节省了设计时间。没有动态引导器,VGX的实现是极其困难的。
  
动态引导器的另一个更具前景的应用是实现"拖放式造型"(Drag-and-Drop Modeling),分得细一点是:  
"拖放式线框造型"(Drag-and-Drop Wireframe Modeling)  
"拖放式零件造型"(Drag-and-Drop Part Modeling)  
"拖放式装配造型"(Drag-and-Drop Assembly Modeling)  
以后更进一步达到智能化造型系统。SDRC的I-DEAS目前已部分实现了上述功能。而参数化系统由于不具备动态引导器以及自身的理论限制,使得它还无法去开发这些功能。限于篇幅,这里不再展开论述。
  
9. 变量化技术的其它特点──主模型
  
SDRC在I-DEAS Master Series首创了主模型技术。主模型技术是变量化技术的基础,是完整的产品定义。它包括如下内容:
  
几何信息、形状特征、变量化尺寸、拓扑关系、几何约束、装配顺序、装配、设计历史树、工程方程、性能描述、尺寸及形位公差、表面粗糙度、应用知识、绘图、样件及刀具设计、卡具及工装设置、加工参数、运动关系、设计规则、仿真分析结果、数控加工走刀路径、工艺信息描述等等。
  
由此可见,主模型所包含的内容是非常丰富的。它不仅统一了软件数据结构,还提供了有关产品设计的更全面的定义,如工艺信息等。
  
主模型技术彻底突破了以往CAD技术的局限,成功地将曲面和实体表达方式融为一体,即,曲面是零厚度的实体,当一组曲面封闭以后,就形成实体;实体上的任何一个平面亦可以随时按需求"一点一拖"而拉成一张曲面,曲面与实体有机地结合起来,其间并不受制于尺寸约束;这样在整个产品设计全过程中,数据结构完全一致,为协同设计和并行工程打下了良好的基础,也使得在参数化技术中长期悬而未决的曲面问题得以较好地解决,为变量化系统在汽车和航太工业的大规模应用铺平了道路。
  
10. 小结
  
综上所述,可以看出,变量化技术是一种设计方法。它将几何图形约束与工程方程耦合在一起联立求解,以图形学理论和强大的计算机数值解析技术为设计者提供约束驱动能力。参数化技术是一种建摸技术,应用于非耦合的几何图形和简易方程式的顺序求解,用特殊情况找寻原理和解释技术,为设计者提供尺寸驱动能力。从技术的理论深度上来说,变量化技术要比参数化技术高一个档次。
  
两种技术的最根本的区别在于是否要全约束以及以什么形式来施加约束。
  
两种技术的应用领域亦由于技术上的差异而不同。除去双方重叠的常规用户外,参数化技术的主要用户多集中于零配件和系列化产品行业;变量化技术主要用户多集中在整机、整车行业,侧重产品系统级的设计开发。 目前,变量化技术和参数化技术还都在不断地丰富和完善自身。九十年代的CAD大舞台一直是这两种技术在唱主角。但是明显看得出,参数化技术的回旋余地已越来越小,而变量化技术的发展空间却还十分广阔。笔者相信,从现在起到进入21世纪初的数年内,将一定是变量化技术大发展的时期。
  
下期将介绍对CAD技术发展有重大影响的汽车业CAD系统选型案例
分享到:  QQ好友和群QQ好友和群 QQ空间QQ空间 腾讯微博腾讯微博 腾讯朋友腾讯朋友
收藏收藏 分享淘帖 赞一下!赞一下!
2
发表于 2002-2-2 11:24:46 | 只看该作者
1. 汽车业面临的问题
  
随着汽车产量的大幅度提升和保有量的相对固定,导致竞争加剧,使得每辆汽车的利润大幅度下滑。如何在提高质量的前提下,在产品开发的每一个环节上降低成本,成为汽车制造商孜孜以求的目标。而竞争的加剧,则更要求汽车制造商要更快地将高质量的新车型推向市场。
  
汽车制造业是技术密集型和劳动密集型产业。为降低生产成本和减少污染,汽车制造商往往将劳动含量高、技术含量低的配件厂建在海外。因此,协同开发、数据共享又成为了制约产品上市周期的重要因素。 进入九十年代以后,CAD技术的应用成本相对于二十多年前来说,已不算太高,而产品开发的成本却在不断上升,其中开发工程师的成本上升的尤为明显。
  
因此,基于以上考虑,易学好用、设计/分析/制造一体化的软件一直备受企业的青睐;同时,支撑整个企业产品信息的框架式软件──产品数据管理系统(PDM),也逐渐为众多的汽车制造商所接受。
  
2. 汽车业巨人们如何打算
  
近几年来,面对居高不下的生产成本和日渐削减的利润,汽车制造商们发现盲目地引进种类繁多的、大量的软件未必能解决企业正在面临的问题。彻底改造研发环境才是真正的出路。于是各大汽车制造商面向整个企业信息系统的改造计划都在紧锣密鼓地蕴酿之中。以下为几个主要的汽车制造商所提出的计划:  
福特:    "福特2000年",C3P项目;
马自达:    "数字改造计划";
日产:    "业务过程革新";
雷诺:    "产品设计及生产环境重组";
日野:    "并行工程计划"等等。
下面重点以福特汽车公司的软件选型为例,重温这个引起全球业界震动的典型案例。
  
3. 史无前例的软件选型──福特建立C3P体系
  
1993年,福特汽车公司制定了面向21世纪的"福特2000年"长远发展规划,决定彻底改造自己的计算机应用状况。福特的目标是:一个新车型的开发周期从目前的36个月缩短到18个月乃至12个月;新车开发的后期设计修改减少50%;原型车制造和测试成本减少50%;投资收益提高30%。
  
福特希望用一个产品数据管理系统(PDM)把计算机辅助设计(CAD)、计算机辅助工程分析(CAE)、计算机辅助制造(CAM)集成起来,融汇到一个遍布全球的公用数据系统之中,即C3P(CAD/CAM/CAE/PDM)。这是C3P概念在整个业界第一次正式提出。
  
历经各个历史阶段的选型与积累,福特内部使用着多种CAD系统:大量的CADDS5与CATIA,还有一些PTC公司和SDRC公司的产品,主要系统是自己开发的PDGS系统。由于庞大的设计工作量,在各个系统之间进行数据交换常常浪费大量时间,同时还会产生数据丢失现象;有时为了找到自己所需要的数据往往要化费很多时间和精力,还经常发生数据混乱现象。福特下决心以C3P为标准,在全球CAD行业中选出一个适合自己的、高度集成的核心式主流软件系统,实现一致性的设计/分析/制造数据表达。
  
福特首先在内部统一了思想认识:"我们是造车的,不是做软件的"。自己的PDGS虽然实用功能很强,但毕竟在软件技术上已经落伍,不符合C3P的要求。福特决定依托一种商用CAD系统,然后将PDGS的功能向它移植。整个选型过程持续了两年时间,几乎世界上所有的大型CAD软件供应商都加入了竞争的行列。
  
首先是UG、然后是CV、继而是CATIA被从竞争的行列中排除出去。因为这些软件的体系结构都已老化、久未更新;软件技术已经落后;学习、应用和实施起来比较困难。而且,他们不能提供适合福特要求的企业级PDM产品。所以他们都相继被淘汰。最后的竞争主要集中在PTC和SDRC的软件产品上。整个分析比较的过程严格、审慎,论证充分。
  
在激烈的竞争过程中,PTC考虑到由于从未在大型汽车企业中获得主流软件的地位,对今后发展不利,故投入了巨大的精力来争夺这一项目。为增强竞争实力,PTC兼并了三家主要的汽车工业造型软件(Alias-Wavefront、CDRS、ICEM-Surf)之一的CDRS;同时为了增强CAE方面的功能,又购买了RASNA公司,将它的分析软件集成到Pro/E当中。
  
但是经过反复比较,充分论证,福特汽车公司最终选择了SDRC作为其长期合作伙伴;选择I-deas Master Series作为其主流核心软件,以集成其它CAD系统上的开发成果;选择Metaphase Series作为其全企业信息系统的集成框架。其论证过程中的几项条件如下:  
软件公司的独立性及财政情况:财政情况独立、良好的软件公司才能够持续不断地开发出新的软件技术;  
软件技术的领先性和技术的可持续发展性:由于CAD技术发展很快,如果在技术上不领先或技术已发展到尽头,则将会在激烈的市场竞争中处于劣势,导致最终因技术落后而被淘汰;  
技术支持能力、工程经验以及软件公司的可合作性:软件公司本身必须有丰富的工程经验,才能真正了解用户的需求并付诸实现;在技术的发展方向上应能满足用户需求(可合作性),同时有强大的工程师队伍帮助用户迅速掌握软件,快速解决使用中的问题;  
CAD/CAM/CAE/PDM各方面技术都比较领先,可为企业提供全面解决方案:C3P技术的最终实施应用,才能为企业带来根本上的好处,为企业加强综合竞争力打下良好基础;  
软件的易学易用性:软件必须通过人来发挥效率,如不能易学易用,自然很难发挥应有功效;  
有强大的大用户群支持:由于大用户在实际应用中会遇到各种问题,这些问题一般具有普遍性,从而促使软件公司不断解决这些问题,带动技术更新。  
基于以上六方面的分析考虑,结合严格的评审和适量的考题测试,福特汽车公司得出了类似本文上期(第二部分)的结论:Pro/Engineer是很好的造型软件,在已定型的系列化零部件造型方面极易发挥特长,但由于参数化技术的局限性,在结构形状不断变化的概念设计阶段却显得无能为力;I-deas Master Series是很好的机械工程软件体系。相对于参数化技术,SDRC的 变量化技术给设计者提供了更大的方便性和创造空间,其技术的发展更具潜力;SDRC提供C3P解决方案的综合实力是目前世界上最强的,PTC尚不具备完善的C3P能力;SDRC由于多年从事技术服务和咨询工作,对于工程的理解以及解决工程实际问题的能力较强;特别是SDRC长期服务于福特所表现出来的合作精神等。所以最终选择SDRC作为长期战略合作伙伴,双方签定了高达2.1亿美元的合同。福特及其配件厂商将在2000年底以前从SDRC公司购买约15,000套I-deas Master Series软件和约12,000套的Metaphase Series软件的使用权,成为世界CAD发展史上迄今为止最大的一次采购合同。这次选型是一次颇具代表性的CAD选型,对业界产生了深远的影响。
  
4. "福特效应"
  
伴随着大型汽车制造厂商开始选择主流软件的浪潮,很多汽车企业开始启动了自己的选型计划。他们各自的选型方式皆有不同,但以上福特所列的六个选型要点却都考虑在内。相近的选型要点必然得出类似的选型结果。继福特之后,又有了马自达、日产、雷诺、日野等等。在近三年这些新的大型选型过程中,SDRC公司赢得了约80%的合同,这种现象被业界评论家称之为"福特效应"。
  
一个有趣的现象是,在决胜阶段几乎都是SDRC与PTC展开最后争夺,因为只有这两种软件才真正代表着九十年代CAD技术发展的最高水平。时至今日,PTC虽获得了相当多的汽车零配件厂商用户,却仍未获得重要的整车汽车制造厂商的订单。这就不难让人理解为什么PTC不惜举债而倾全力收购CV──CV的用户群和PDM产品是PTC急需的战略资源。
  
附表为近三年选择SDRC软件作为主要技术支撑的汽车业厂商。
  
汽车制造厂商 国家 选用核心CAD软件 选用PDM软件 合同日期 合同额($万) 产品范围  
福特 (Ford) 美国 I-deas Master Series Metapahse 1995/12/19 $20,700
  整车  
日产 (Nissan) 日本 I-deas Master Series Metapahse 1998/1/7 $10,000
  整车  
雷诺 (Renault) 法国 I-deas MS + Euclid Metapahse 1998/2/11 $3,500
  整车  
马自达 (Mazda) 日本 I-deas Master Series Metapahse 1996/12/19 $3,100
  整车  
奔驰 (M-Benz) 德国 CATIA Metapahse 1996/2/5 $600
  整车  
克莱斯勒 (Chrysler) 美国 CATIA Metapahse 1998   整车  
数字流程 (DIPRO) 日本 I-deas Master Series Metapahse 1997/2/23 $6,500
  配件  
日野 (Hino) 日本 I-deas MS + TOGO Metapahse 1998/1   整车  
丰田 (Toyota) 日本 TOGO-CAD (I-deas)   1997/2   整车  
本田 (Honda) 日本 CATIA + I-deas MS   1997   整车  
现代 (Hyundai) 韩国 CATIA + I-deas MS   1997/3   整车  
嘎斯 (GAZ) 俄罗斯 I-deas Master Series   1996/2/13   整车  
塔塔 (Tata) 印度 I-deas Master Series Metapahse 1996   整车  
Mahindra & Mahidra 印度 I-deas Master Series   1997   整车  
帕金斯 (Perkins) 英国 CADDS5 + I-deas MS Metapahse 1996   发动机  
固特异 (Goodyear) 美国 I-deas Master Series Metapahse 1996   轮胎  
米其林 (Michelin) 法国   Metapahse 1997   轮胎  
Lear Corperation 美国   Metapahse 1997   配件  
PICO/Wisne 美国 I-deas Master Series Metapahse 1997/12/27   配件  
Johnson & Johnson 美国 I-deas Master Series Metapahse 1996   配件  
Mack Truck 美国   Metapahse 1997/10   配件  
Allied Automotive 美国   Metapahse 1997   配件  
ITT Automotive 美国   Metapahse 1997   配件  
  
5. 汽车业人士如是说
  
福特公司副总裁Neil Ressler先生:"C3P是由福特主导的一次对设计自动化环境的重新武装,它具有十分重大的意义。我相信C3P项目将为福特带来 极大的竞争优势。"
  
福特C3P项目总经理Richard Riff博士:"我们已经超额完成任务。当我们开始时,不少业内人士说在四年时间内完成C3P几乎是不可能的。我们要证明他们是错的,我们会比原计划更快地实现这一目标。"
  
雷诺科技信息系统部主任Francois Pistre先生:"选择象SDRC这样世界级 的软件供应商,与马特拉一起参与我们车辆工程,将会帮助我们在雷诺成功地进行前所未有的、最广泛的产品设计及生产环境重组工作。融汇SDRC与马特拉的丰富的汽车专业经验以及来自双方的广泛的先进设计/制造技术, 将使雷诺受益匪浅。这对保持雷诺在当今市场上的强有力的竞争地位是至关重要的。"
  
日产公司工程系统部的总经理Joji Madusa先生:"单一CAD/CAM/CAE系统可使车身曲面、动力总成、实体设计以及零部件设计实现标准化,这将使得整车开发全过程获得极大的并行性。"
  
日产董事会成员、业务过程革新部总经理Yoshimichi Urabe先生:"日产公司在全球范围内开发、制造和销售汽车产品。日产需要开发制造出让客户满意的车。为此,我们需要集我们所有之技术秘诀、过程知识以及具有全球性资源的优点来不断改进自身,以全新姿态进入下一个世纪。从这方面考虑,来自SDRC的I-DEAS和Metaphse技术将是帮助实现我们的目标──并行工程的 最有效的工具。在日产全球部门进行的业务过程革新,将改进产品质量、减少成本和缩短上市时间,这将是引人注目地改进全部产品性能的强大的驱动力,也是达到日产业务目标的关键因素。"
  
马自达项目总经理Mitsushiro Niimi先生:"在技术是第一生产力的今天, 要想在全球大市场中占有一席之地,必须不断地改进技术。马自达选择了I-DEAS Master Series是因为它在曲面造型、实体造型、仿真分析、制造、测 试和并行工程方面的强大功能,并且该软件是使马自达在数字改造计划中获益并急需的技术。我们对与SDRC公司业已建立的密切合作关系很满意。" "Metaphase Series 2 软件将能够使马自达在开发方面具有企业级的并行工程工具。这意味着我们的工程师将能够更密切的并肩工作,快捷、可靠地享用工程数据。采用这一并行工程手段将帮助马自达更有效地通讯,降低开发费用,缩短产品上市时间。"
  
6. 汽车业计算机应用未来发展趋势  
  
高质量、低成本、更快的产品上市时间和更新的产品式样是企业注定要追求的共同目标。通过福特的选型案例以及上述汽车业人士的论述,我们至少看到了以下四个方面的汽车业计算机应用未来发展趋势:
  
改进企业过程──有效地利用企业资源,步入全球性大协作;
核心式工程工具──实现电子(或数字)样机需要核心式的主模型技术;
数据管理及控制──用PDM系统构建企业信息框架,实现企业级信息共享;
集成的供应链──制造厂商与零配件供应商的日趋紧密的信息共享形成集成的供应链。
  
以上发展趋势也可为其它制造业用户参考。  
  
7. 结束语
  
温故而知新,知新而更上层楼。本文以连载形式回顾CAD技术30年的发展历史,讨论了当代主流CAD软件技术和应用状况。重点在于软件基础造型技术及软件体系结构,而未就各软件的一些实用性功能展开论述。每个提及的软件都具有相当的实用性。但是实用性毕竟与软件基础造型技术及软件体系结构是两码事,只有两方面都过得硬才能得以长期发展。不少软件在不同的历史阶段也曾占据过主导地位,其根本原因在于曾有过先进的指导思想,在当时技术上处于领先地位。但是技术的发展总是在不断地推陈出新,没有一项技术能够长盛不衰。停滞不前的技术将很快地淹没在历史的长河中。只有不断创新,才能在激烈的竞争中立于不败之地。
  
参数化技术和变量化技术是当今的主流CAD造型技术。参数化技术在今天仍具有一定的领先性和相当的代表性,竞争力仍然很强。但是参数化技术的许多缺陷已经逐渐被越来越多的人所了解。更新一代的变量化技术所带来的灵活性及方便性已不断得到人们的承认,随着自身技术的不断完善,已向参数化技术提出了严峻的挑战。今后的CAD技术市场将主要是这两种技术逐鹿中原。孰能执牛耳乎?读者当拭目以待
3
发表于 2002-2-2 11:33:05 | 只看该作者
其实UG也是集成了一部分变量化造型技术,如欠约束、后约束技术等, 在UG的21、22版本以后,估计必将基于变量化造型技术,开创出更宽广的发展空间。上述仅代表我个人观点,不是EDS官方观点
4
发表于 2002-2-2 14:28:05 | 只看该作者
这篇文章我读过,不是你是不是原作者?是不是ideas高手,可惜ideas英年早逝。
5
发表于 2002-2-2 14:31:26 | 只看该作者
ideas 还是有很多用户啊!:I:I:I
6
发表于 2002-2-2 14:59:52 | 只看该作者
我是转载的,ideas在全球12大车厂中,有4家的主流CAD SOFT 是IDEAS,
它的CAD市场份额与UG相当,在CAD业界能排到前4强,而且它拥有业界第一的PDM--metalphase,还有它的超变量技术,这些也可能是EDS收购SDRC的原因。在UG的21、22版本,将于IDEAS和并。
您需要登录后才可以回帖 登录 | 注册

本版积分规则

3D打印手板模型快速制作服务,在线报价下单!

QQ 咨询|手机版|联系我们|iCAx开思网  

GMT+8, 2025-1-22 12:15 , Processed in 0.040540 second(s), 11 queries , Gzip On, Redis On.

Powered by Discuz! X3.3

© 2002-2025 www.iCAx.org

快速回复 返回顶部 返回列表