4.4. 玻纤配向与场协同角的关系 图6为双极板上sensor位置示意图,图7在截面I肉厚处之平均场协同角。图7为肉厚处之平均场协同角,有含玻纤时因热传较好,平均场协同角较小。 因此流道的形态与纤维配向关系密切,如何使得充填时,纤维配向与流动平衡改善,是值得探讨的问题。 图 6 双极板上sensor位置示意图 (a) 不含玻纤 (b) 玻纤 图7 在截面I之平均场协同角 (肉厚处) 五、结果与讨论 未含玻纤与含玻纤之双极板在充填时有均未产生包封产生,配向值越高代表纤维被流场在该方向配向的程度越高,纤维配向程度,指叉状波浪流道50.755%,含玻纤时因热传较好,平均场协同角较小。由仿真结果显示,利用场协同角、玻纤与流道形状配合模流软件可用来找出较佳的组合,来微调流动平衡,提高燃料电池双极板具纤维配向射出成型过程的效率,配合场协同角与燃料电池双极板玻纤配向与玻纤比率可提供日后研究的重点。 六、参考文献 1. Shiuh Ming Chang,Hung Pin Chen,"Indoor Thermal Comfort Optimization by Field Synergy Principle for Air-Conditioning", International Journal of Intelligent Systems and Applications (IJISA),Volume 3, Number 1( publishing) 2. Shiuh Ming Chang*、Jie Hao Chang、Jiun Hau Huang, “Optimization Cooling Fan Position for CPU by Field Synergy Principle”,Journal of Professional Mechanical Engineers, 2010, Vol.3, No.3, pp.1-7, 3. Shiuh Ming Chang*、Jia Fu Lee、Chih Hua Hsu、Cai Wan Chang-Jian,” Auto Mode IC Mold Flow by Uniform Filling Principle“,Journal of Professional Mechanical Engineers, 2010, Vol.3, No.3, pp.14-18 4. Shiuh-Ming Chang*, Cai-Wan Chang-Jian ,” Influence on Pem Fuel Cell Bipolar Plate by Different Fiber Orientation and Cooling System”, 2010 International Symposium on Computer, Communication,Control and Automation, IEEE 2010, 3CA,2010, May 5-7, 2010, Taiwan, Tainan ,Vol II, , pp5-8(EI) 5. Shiuh-Ming Chang*, Jenn-Kun Kuo ,” Field Synergy Principle to Square and Trapezoid Types FuelCell Bipolar Plate of Mold Injection”, 2010 Asia-Pacific Power and Energy Engineering Conference(APPEEC 2010), IEEE 2010, March 27-31, China, Crowne Plaza Chengdu, Paper ID:91254, 03-083,pp1-6 (EI) 6. M. S. Wilson and D. N. Busick, “Composite Bipolar Plate for Electrochemical Cells”, WO00/25372.(2000) 7. M. K. Bisaria, A. Peter, A. Mohamed, C. Yuqi, “Injection Moldable Conductive AromaticThermoplastic Liquid Crystalline Polymer Compositions”, WO00/44005. (2000) 8. R. Horung and G. Kappelt, “Bipolar Plate Materials DevelOPMent Using Fe-based Alloys for SolidPolymer Fuel Cells”, Journal of Power Sources, Vol 72, pp. 20-21.(1998) 9. J. Wind, R. Spah, W. Kaiser and G. Bohm, “Metallic Bipolar Plates for PEM Fuel Cells”, Journal ofPower Sources, Vol. 105, pp. 256-260. (2002) 10. D.P. Davies, P.L. Adcock, M. Turpin and S.J. Rowen, “Bipolar Plate Materials for Solid Polymer FuelCells”, Journal of Applied Electrochemistry, Vol. 86, pp.237-242. (2000) 11. R. C. Makkus, A. H.H. Janssen, F. A. de Bruijn and R. K.A.M. Mallant, “StainlessSteel forCost-competitive Bipolar Plates in PEMFCs”, Fuel Cells Bulletin, Vol. 3, pp.5-9. (2000) 12. Http://H2economy.com,Website. (2002) 13. F. Mighri, M. A. Hunealt, and M. F. Champage, “Electrically Conductive Thermoplastic Blends forInjection and Compression Molding of Bipolar Plates in the Fuel Cell Application”, Polymer Engineering and Science, Vol. 44, pp. 1755-1765. (2004) 14. A. Heinzel, F. Mahlendorf, O. Niemzig and C. Kreuz, “Injection Moulded Low CostBipolar Plates for PEM Fuel Cells”, Journal of Power Sources, Vol. 131, pp.35-40.(2004) 15. 10. R. H. J. Blunk, D. J. Lisi, Y. E. Yoo and C. L. Tucker III, “Enhanced Conductivity of Fuel CellPlates through Controlled Fiber Orientation”, AIChE Journal, Vol. 49, pp.18-29. (2003) |
【CAE模具高校产学联盟官方网站】产学合作技术交流整合平台,拓宽学生就业方向的道路,促进产学合作技术交流,加快CAE模具成型技术的快速转移。
Copyright © 2002-2024 www.iCAx.org