3. Methods for applying DirectTool in tooling processes
DirectTool can be applied in many different ways to achieve the benefits described above. A simple way is to build core and/or cavity inserts to fit into standard tool-frames or bolsters, in the same way that is commonly done with traditional machining. Often it is more effective, i.e. requires less effort, to mount the DirectTool core and/or cavity (including at least part of the build platform on which they have been built) directly onto the plates of the injection moulding machine, i.e. as "onserts" rather than inserts. This can be seen in Figure 1 and Figure 2. Figure 6: DMLS is often combined with other production methods for one tool, an approach which is often called hybrid tooling and which can be applied in many variations. For example if only one half of the tool has intricate geometry, like a mobile phone housing with a simple free-form outer (visible) surface but a complex rear (hidden) surface with ribs and clips, then it is often economical to machine the cavity (for the outer surface) whilst building the more complex core using DMLS. In other cases, only relatively small regions of a tool are so complex that they cannot be milled. In such cases it can be sensible to build small inserts using DMLS and machining pockets in the main tool for these to fit into, either as fixed or loose inserts. An example with a machined aluminium tool is shown in Figure 6 (left picture), and a similar approach can also be used with cast epoxy tooling, in which case DMLS inserts are also used for any features such as thin walls where the epoxy would not be strong enough to resist the moulding forces [3]. DMLS can also be effectively used to build various other tooling elements. The example shown in Figure 6 (right picture) used DMLS for moulding cavities, sliding inserts and also the guides for the sliders. To prevent galling, different DMLS materials were used for elements which repeatedly slide over each other. Figure 7: Cooled inserts for tooling. DMLS is also sometimes used to implement design changes to existing tools or to repair worn or damaged tools. |