- 株式会社松井制作所案例 以下的案例将就传统水路和异型水路设计的冷却结果作比较。下图为几何复杂且厚度变化极大的产品模型。使用异型水路设计将可大幅降低冷却时间逾33% (10秒)。 传统的冷却水路无法贴近产品的几何外形,冷却效果受到局限,在几何复杂的产品上尤为明显。如今,日益月新的制程技术实现了异型水路设计,然而,冷却系统的验证和设计仍因产品的复杂度而备受考验。 Moldex3D冷却分析不仅提供所需的冷却时间,更可进一步提供模内的温度变化。此外,冷却行为如:流率、压力损失、涡旋与死水区域,都可透过Moldex3D真实三维冷却系统分析获得预测结果。要达到异型水路和冷却效率优化不再是遥不可及。 Moldex3D 的异型水路解决方案有:
本案例的产品规格如下:
我们将以这个案例进行传统水路和异型水路的比较;传统的冷却水路设计在公模侧是使用隔板式水路,然而,异型水路则可以依产品而行,满足多变的设计。 a. 传统水路设计 b. 异型水路设计 异型水路设计距离模穴表面等距离,然而,由于受到几何模型的限制,冷却水路仍然无法深入许多地方。在这个案例中,冷却水路的平均值直径是4公厘,模穴与水管相距8.3公厘,水管间则是相距9公厘。 以下为一些水路设计的模拟结果: 传统的水路设计在冷却结束时的塑件表面温度如下所示,温度从60.04-134.02℃。模穴壁的温度分布相当低且一致;然而,在公模侧,塑件的表面温度会因区域而异。红色圈选处为最高温,很明显地看出,并无水路经过该处。 a. 表面温度分布范围 57.82– 129.95 ℃ b. 最高温位于红色圈选处 以下的图显示圈选处所需的冷却时间。冷却时间指的是从保压结束之后到脱模,如数值所显示,冷却所需时间约为101.55秒,默认值(20秒)不足。 冷却结束时的表面温度分布如下图所示,温布从57.82-129.95 ℃,低于传统水路设计,除此之外,公模侧的温度分布,异型水路的设计也比传统设计更均匀。 最大所需冷却时间也降低至96.51秒。 如果我们将两组案例设定同样的温度范围,我们可以看到异型水路组能有效移除公模侧大部分的热量,然而,最高温的区域因为没有水路经过,依然存在(红色圈选处)。 以下是冷却效率的比较,在传统的设计里,由于隔板式水路无法接触产品公模侧表面,处于较低的冷却水路只能吸收三分之一的总热量。然而,在异型水路的设计中,贴近产品公模侧表面水路的冷却效率(53.73%)就远高于下方隔板式水路的冷却效率(1.16%)。 生产的周期时间是考虑水路设计的重点之一,比较传统设计,异型水路设计可以减少10秒的周期,将近33%。 举例来说,可以将凹痕值作检视产品质量的指针。以下为传统水路设计(冷却30秒)和异型水路设计(冷却20秒)的凹痕比较图。我们可以由下图中可看出所示的两种水路设计凹痕预测值,异形水路的最大值较小。但是在红色圈圈处的值却接近。这个证明了两个脱模状态的一致性。 传统水路凹痕位移值0-0.148mm 异型水路凹痕位移值 0-0.105mm 整体而言,传统的水路冷却效果遭到局限,由于冷却水路无法触及产品表面因此很难做进一步改善。在这个案例中,我们可以发现异型水路设计可以有效降低冷却时间并提升冷却效率,同时确保产品质量。 |